1 Show that $\int_{1}^{2} \frac{1}{\sqrt{3 x-2}} \mathrm{~d} x=\frac{2}{3}$.

2 Fig. 9 shows the curve $y=\mathrm{f}(x)$, which has a y-intercept at $\mathrm{P}(0,3)$, a minimum point at $\mathrm{Q}(1,2)$, and an asymptote $x=-1$.

Fig. 9
(i) Find the coordinates of the images of the points P and Q when the curve $y=f(x)$ is transformed to
(A) $y=2 f(x)$,
(B) $y=\mathrm{f}(x+1)+2$.

You are now given that $\mathrm{f}(x)=\frac{x^{2}+3}{x+1}, x \neq-1$.
(ii) Find $\mathrm{f}^{\prime}(x)$, and hence find the coordinates of the other turning point on the curve $y=\mathrm{f}(x)$.
(iii) Show that $\mathrm{f}(x-1)=x-2+\frac{4}{x}$.
(iv) Find $\int_{a}^{b}\left(x-2+\frac{4}{x}\right) \mathrm{d} x$ in terms of a and b.

Hence, by choosing suitable values for a and b, find the exact area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=1$.

3 Evaluate $\int_{0}^{\frac{1}{6} \pi} \sin 3 x \mathrm{~d} x$.

4 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{1+\cos x}$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$. P is the point on the curve with x-coordinate $\frac{1}{3} \pi$.

Fig. 8
(i) Find the y-coordinate of P .
(ii) Find $\mathrm{f}^{\prime}(x)$. Hence find the gradient of the curve at the point P .
(iii) Show that the derivative of $\frac{\sin x}{1+\cos x}$ is $\frac{1}{1+\cos x}$. Hence find the exact area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\frac{1}{3} \pi$.
(iv) Show that $\mathrm{f}^{-1}(x)=\arccos \left(\frac{1}{x}-1\right)$. State the domain of this inverse function, and add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8.

